
 Technical Sciences and Applied Mathematics 
 

 55

 
 

NEW METHODS OF OPTIMIZATION SHAPE FOR MAXIMAL DRAG 
OR LIFT FORCE AIRFOILS

 
 

Mircea LUPU*, Gheorghe  RADU**, Ştefan NEDELCU**, Mircea BOŞCOIANU** 
 

*“Transilvania” University of Brasov, Romania  
**“Henri Coanda” Air Force Academy, Brasov, Romania   

 
 

Abstract: Direct and inverse boundary value problems are solved and the solution of an optimization 
shape problem is obtained analytically in the case of some nonlinear integral functionals. The plain 
potential flow of an inviscid fluid is considered in the absence of mass force (Hyp). The flow – unlimited 
jet – encounters a symmetrical curvilinear obstacle (the Helmholtz scheme). For invers problems there 
are derived singular integral equations and the movement is obtained in the auxiliary canonical half 
plane. Next, a new method of optimization problem is solved analytically. The design of the optimal 
airfoil is performed. The drag/lift coefficient, nonlinear integral functionals and other geometrical 
parameters are computed in the case of a given distribution of the velocity or angle on the profile/airfoil. 
The main applications of this contributions are related to the optimization of leading edges, modeling 
special airfoils for different categories of low speed small UAVs, but also in determining efficient systems 
for recovery of  light UAVs (deflectors, special braking parachute, determal systems). 
 
Mathematics Subject Classifications 2010: 76B07, 49Q10, 35J25, 35F15, 45E05. 
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1. INTRODUCTION   
 

The aerodynamic performances are given 
by a nonlinear functional [1,2]. We use the 
Maklakov-Jensen inequality and the inverse 
methods for singular integral equations, [3,4]. 
The velocity field in the physical domain   
w(z) = u(x; y) + iv(x; y).  

The complex potential f(z) and the 
complex velocity w(z) are defined: 
f(z) = φ(x, y) + i ψ(x; y); 

θ−==−= iVe
dz
dfivuw             (1) 

with the velocity potential 
and the stream function. The velocity is: 

)y,x(i),y,x( ψϕ

wargand)vu(V 2
1

22 =θ+=   
Let 0,i,D ≥ηη+ξ=ζζ  a canonical 

auxiliary domain which corresponds to the 
plane and  .  The aim is to 
determine 

0y,Dz ≥ 0,Df ≥ψ
)(ff ζ= , , with ζ↔ DDf 0f =ζ . 

Let the Jukovski function )(ζω=ω .  

Along the free lines , we have: 0VV =

θ+=ω it , ω−= eVw 0 , 
V

Vlnt
0

= ,  

0VV0 ≤≤ , 0w =ζ                   (2)                    

)(),(ff ζω=ωζ=  and )(zz ζ=  corresponds 
to the conformal mappings , 

, , and it is found 

+
ζ

+ ↔ DDf
+
ζ

+
ω ↔ DD +

ζ
+ ↔ DDz

ζ=ζ= A)(ff . In addition: 0,0 =ψ=η  and 

0| 0=δη
δϕ

=η . The boundaries of  

correspond to the boundary of 

fz D,D

0,D =ηζ , 
),( ∞−∞∈ξ , on which we have t .const=ψ  

On 0=η  we have: 

∫ ξθ=θξ=ξϕ′=ξ
θ

ξ )(),(VV,d
V
e)(z

i
    (3) 

Using )(ζω and (3) we find the ecuation of 
the obstacle and the freelines. The flow 
encounters a curvilinear symmetrical obstacle 
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( ), in the points B ,  the free 
streamlines 

BBO ′ B′
)CB(),BC( ′′  are detached; 

 (downstream). Between 

 and , we suppose that the boundary 
corresponds to 

→→→
=′= iV)C(V)C(V 0

+
zD +

ζD
)OBCA( 0 ),(,0 ∞−∞∈ξ=η . 

The obstacle (OB) is the segment (-1,1)     
(Fig. 2) and the length of (OB) in  is L.  zD

The integral equations. The aim is to find 
)(ζω=ω defined in ζD  analytically in two 

cases: (1) if )(i)(t)( ξθ+ξ=ξω  is known on 
)();1,(,0:0 ξθ=θ−−∞∈ξ=θ=η or (2) if it is 

given . These 
mixed problems have the solutions (Dirichlet, 
Volterra, Riemann-Hilbert [1]): 

)0,1(,0t),1,1(),(tt ∈ξ=−∈ξξ=

∫
− ζ−+π

+ζ
=ζω

1

1 s
ds

1s
)s(t

i
1)( ,  

∫
− ζ−−

θ
π
−ζ

=ζω
1

1 s
ds

s1
)s(1)( , 

,0)(lim =ζω
∞→ζ

                        (4) +
ζ∈ζ D

Applying the Sohotski-Plemelj relation [5], 
it results the following singular integral 
equations:  

θ+=ω it ,  

∫
− ξ−+π

+ξ
−=ξθ

1

1
,

s
ds

1s
)s(t

i
1

)(  

∫
−

−∈ξ
ξ−−

θ
π
ξ−

=ξ
1

1
)1,1(,

s
ds

s1
)s(1

)(t     (5) 

The practical importance of these inverse 
problems is that if it is known a priori the 
distribution of the velocity, or of the pressure, 
or of the angle, on the profile then the shape of 
the profile may be computed a posteriori.    
Finally the pressure, the drag coefficient and 
the length of the profile are respectivelly:   

∫

∫

−

−

π

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

ρ
= 1

1

)s(t

21

1
o

dse

ds
1s

)s(t

]t[I],t[I
2

LVP
2

    (6)                            

∫ ∫
− −

===
ρ

=
1

1

1

1

)s(t
oox dse

V
A

)s(V
dsAL],t[I

LV

P2C 2  

 

We obtain the profile with the distribution 
of )(or)(t),(V ξθξξ  linked to a parameter 
selected in order to extremize the aerodynamic 
drag. The distribution of the velocity on the 
profile must satisfy the Brillouin-Villat (B-V) 
conditions:  

0V)1(V)B(V,0)1(V)0(V ==ξ==−=ξ=  
( ) )1,1(,0V −∈ξ>ξ′                                       (7) 

 
2. BASIC ASPECTS OF DIFFERENT 
SIMPLE AERODYNAMIC SHAPE 

OPTIMIZATION 
 

Let the curvilinear axis-symmetric profiles,   
with a given speed distribution (Fig. 1).  
   

 
 

Fig. 1 Curvilinear axis-symmetric profiles 
 

In the inverse problem, let the following 
distribution of the velocity  on the obstacle: 

( ) ( ) ,
1

2ln
V

Vlntt,
2

1VVV
0

0
ξ+

==ξ=
ξ+

=ξ=     

( )1,1−∈ξ                                                    (8) 
Where: 
( ) ( ) ( ) ( ) 0V1VBV,01VOV ==ξ==−=ξ=  

This distribution is motivated by the fact 
that the function ( )ξ= VV  must satisfy the 
condition 0)1(V =−  and the convergence of 
the integrals. In this case: 

( ) ( ) ( .01h,10,h.1)(V ≠−αξξ+=ξ α pp )  
Thus, (8) is a choice with 21=α  and 
( ) .0V fξ′  From (8) and (5) we obtain the 

velocity angle along (OB): 

( ) ( 1,1,
2

1T
2

−∈ξ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ξ+
−

π
=ξθ )              (9) 

Here, 

( )
( )

( ) ( )[ ]aLiaLi1
1n2

a2aT 22
0n

2

1n2
−−

π
=

+π
= ∑

∞

=

+
 

( ) 1a,
n
aaLi

1n
2

n

2 p∑
∞

=
=                  (10) 
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Fig. 2 Obstacle OB and free line BC 
 

It’s easy to see that: 

( ) ∫ −
+

π
=

−
+

π
=

a

0
,

a
da

a1
a1ln1aT,

a1
a1ln

a
1

da
dT

( ) ( ) 00T,
4

1T =
π

±=±                            

From (9) we have  ( ) ( ) ,
2

1O π
=−=ξθ=θ  

( )
4

)1(B π
==ξθ=θ  and we observe that the 

curve  has a continuous tangent with 
 which assure the downstream 

convexity. We remark that (8) and (9) are 
inversion formulae for the integral singular 
equations (5), and we have in the hodograph 
plane (

( BBO ′)

)

( ) 0pξθ′

θ,V  on the profile: 

( ) ,VV0,
V
VT

2
V 0

0 ≤≤⎟
⎠
⎞

⎜
⎝
⎛−

π
=θ  

( ) ( )θ=θ=θ VV,V                             (11) 
We consider the general case: 

),1,0(,
2

1V)(VV 0 ∈α⎟
⎠
⎞

⎜
⎝
⎛ ξ+

=ξ=
α

   

)1,1(,
1

2
V
Vln)(tt

0
−∈ξ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ξ+

==ξ=
α

(12) 

From (5) and (12) we obtain the velocity 
angle along (OB): 

]1,1[;
2

1T2)( −∈ξ⎥
⎦

⎤
⎢
⎣

⎡ ξ+
α−απ=ξθ     (13) 

From (13) we have: 

2
)1()B(;)1()0( απ
==ξθ=θαπ=−=ξθ=θ  

Knowing  and  from (6) and (13) it is 
possible to determine the parameter A: 

L 0V

⎥⎦
⎤

⎢⎣
⎡∈α

α−
=ξ= ∫

− 2
1,0,

1
2

V
Ade

V
AL 0

1

1

t
0    (14) 

It results the equations of the obstacle 
(OB): 

( ) ( ) ( ) ,ds
s1
scos

4
2

L
xX

1
∫
ξ

− +
θ

=
ξ

=ξ    

( ) ( ) ( ) ( 1,1,ds
s1
ssin

4
2

L
yY

1
−∈ξ

+
θ

=
ξ

=ξ ∫
ξ

−

)

)

 (15) 

One similarly obtains the equations of the 
free line (BC). Next, we compute the resultant 
of pressures for the whole profile ( BBO ′  and 
the drag coefficient (6): xC

( )
π

α−αρ
=

116
2

L)V(P
220

                     (16) 

The case in which we have just one 
parameter with )(C)(C xx α⇒α is maximal. 

( ) π
α−α

=
ρ

=
)1(16

2
LV

PC
2

20x           

0)(C,0)(Cx >α′≡α′                             (17) 
 

If we take ]
2
1,0[∈α  the ==α= )

2
1(CC xmax  

638,02
=

π
=  (edges concave, Fig. 3) and for 

)1,0(∈α we obtaining (edges accolade, Fig. 4): 

75,0
27
64)

3
2(CC xmax =

π
==α= . 

In Fig. 3 and Fig. 4 we present the profiles 
for maximal drag. 

 

 
 

Fig. 3 Profile with concave edges 
 

 
 

Fig. 4 Profile with accolade edges 
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The general optimization problem of 
shape of the wing with subsonic leading edge 
(sail prove): 

A) Profiles with velocity distribution 
, (8) (12), [8]. )(V ξ

B) Profiles with angles distribution )(ξθ , 
plate or ogival profiles. In this case 
distribution angle )(ξθ=θ  from ogival 
profiles: 

2
1)()( ξ+

α−γπ+απ=ξθ , 

απ=−=ξθ=θ )1()O( , 

2
1,)1()B( ≤α<γγπ==ξθ=θ             (18) 

Replacing )(ξθ  in the integral equations 
(5) obtained distribution velocity on the ogival 
profile with: 

0V)B(V,0)O(V == , 

ξ−−
ξ−+

+
ξ−

α−γπ==
12
12ln

2
1)(

V
Vlnt

0
,   

0VV =                  (19) 
Calculating the pressure and  (6), we 

obtain: 
xC

2
0

)4(
4
AVP δ−α
πρ

= , 

)(,
2

1)(U γ−απ=δ
ξ−

=ξ , 

∫
−

δ− ξ⎟
⎠
⎞

⎜
⎝
⎛
−
+

δ−α
=δ

1

1

2
U

2

x

d
U1
U1e

)4(
2
1)(C               (20) 

a) Considering ,
2

,
2
1 π

=θ=γ=α  

U1
U1ln

2
1t

−
+

=  and 
U1
U1VV 0

+
−

= , we have 

“Helmholtz plate” and 

 87980,0
4
2CH

x ≈
π+
π

=                          (21) 

b) Considering 
2

,
2
1 π

<απ=θ<γ=α  it is 

a triangle profile for the Newton problem (i.e. 
to minimal drag ogival profiles): 

[ ]
H
x2

2
*
x C

sin)1(421
4)(C ≤

απα−β⋅α+α+
πα

=α , 

∫ λ
λ+

=β
−1

0

1x
d

1
t)x(                                   (22) 

Particularly, H
x

*
x C

2
1C,

2
)

2
1(,

2
1

=⎟
⎠
⎞

⎜
⎝
⎛π

=β=α . 

For polygonal profiles, the integral equation 
method is more efficient than the hodographic 
method from the theory of jets. 
    C) Parametric profiles. The best deflector 

We consider profiles with the distributions:  

2
1eVV 2

1
0 ξ+

=
ξ−

δ−
,  

)1,1(,
2

1ln
2

1)(t0 −∈ξ
ξ+

−
ξ−

δ=ξ , 

satisfying the (B-V) conditions. Using )(t0 ξ  
within (5), it results: 

)
2

1(T
2

1
2

)( ξ+
−

ξ+
δ+

π
=ξθ ,  

where: ∑ ∫
∞

=

α+

−
+

π
=

+
α

π
=α

0n 0
2

1n2

s
ds

s1
s1ln1

)1n2(
2)(T , 

.0)0(T,
4

)1(T =
π

=±   

For ]2,0[
π

∈δ , the profile is prove type, 

while for )
2

3,2( π
π

∈δ  the profile is deflector. 

With (6), it results: 

)(C,

dsine8

)4()t(IC x

2

0

sin

2

x δ

θθπ

+δπ
==

∫

π

θδ

 is 

increasing and consequently 

86053.0)2(C,638.02)0(C M
x

P
x ≈

π
=δ≈

π
==δ . 

For 
π

>δ
2  we find the maximal resistance 

deflector. The main tool is the Jensen 
inequality: if  and  are integrable 

functions in , then 

0)x(f ≥ )x(g
1n2 +α

∫
∫

∫
∫ ≥

b

a
b

a

b

a
b

a

)x(g

dx)x(f

dx)x(g)x(f
expdx)x(fdxe)x(f  
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Where the inequality occurs if g is 
constant , [2,3,4].  The major idea to 
maximize a functional I[u] is based on the use 
of Jensen inequality, I[u] < J[u], whose 
maximal point  is constant. 

)gg( 0≡

0U
I[u] .max]U[I]U[J]u[J o0 ==≤≤   
For )1,1(),(u)(t)(t 0 −∈ξξ+ξ=ξ , where 

is disturbed velocity applying the Jensen 
inequality to the denominator of  (6), it 

results 

)(u ξ

xC

U
4
2

2

x

e4

)22U())u(U(J))u(t(IC

π

+
=≤= , 

with ∫
−

ξ
ξ+

ξ−
δ+

=
1

1
d

1
2

1u
U . The maximum 

value of J(U)  (where ) is obtained 

for 

0)U(J 0 =′

ξ+
ξ

== ∫
− 1

dg22U
1

1
00 . The equality 

case of the Jensen’s inequality implies     

that 

   

,1g0 = 2
11u ξ−

δ−= maximizes the 

functional I(t(u)). Further, we obtain: 

ξ+
+=

1
2ln1t , 

2
1

e
VV

0 ξ+
= , 

936797.0C
e

8)22(JI D
xmax ≈=

π
== .  

The obtained distribution of )(V ξ  gives 
the best deflector of the family ).,(V δξ  For 

the impermeable parachute is found 
again, [3,4].  This result is in agreement with 
that ( ) obtained by Maklakov before 
using Levi-Civita method [2].  

0=δ

0=δ

For 3D axis-symmetric profiles: 

,
d)sin(sine

)2(8C

0

2sin

2
*
x

∫
π

θδ θθ+θ

+δπ
π

=  

911.0)410916.0(C(max)C,
2
1 *

x ≈=δ≈γ−=δ  

For 
2

,0,
2
1 π

=θ=δ=γ=α , it is      

obtained the Helmholtz plane plate, with 

87980.0
4

2CH
x ≈=

+π
π

= . It may be observed 

that ,CCCCC D
x

*
x

H
x

M
x

P
x <<<< ,

4
LVA

0

P =

,
)4(2

LVA
0

M +π
=

4
LVA

0

H +π
= ,  

)410916.01(4
LVA

0
*

+
≈ , 

R4
LVA

0

D = . 

For the minimal drag case it results: 

γ=α=ξθ )( <
2
π  and  

 

min H
x2

2
*
x C

sin))1(421(
4)(C <

απα−βα+α+
πα

=α  

Where dt
t1

t)x(
1

0

1x

∫ +
=β

−
 (triangle airfoil).  

 
3. THE LIFT MAXIMIZATION 

 
Let a symmetrical curve plate  in a 

paralel flow with the chord. Let be  
length of  and l length of chord knowns 
again  free lines with 
stream line 

)AB(
)AB(L

)AB(

00 BB,AA 00AMBBA  
0=ψ  (Fig. 5, 6). 

 

- +

0 
γ 

A

A0 B0

B
ε 

x

x

V0 V0

 
 

Fig. 5 Symmetrical curve plate (AB) 
 

-1 +10 

η 

AA0 B0B

 
 

Fig. 6 Free lines  00 BB,AA
 

We denote by 
l

lL=k −  and we will must 

to determine optimal geometrical shape for 
maximum lift P (rectangular on chord). We 
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consider T1, T2 theorems with integral 
equations and we will determine potential 
function )(f=f ζ  and )(= ξωω  in the upper 
half plane, ; the plate  being lateral 

acting of wind with the speed . Let be 

0≥η )AB(

iV0r

)(f ζ  complex potential and ,
dz
d

d
df=

dz
df= ζ

ζ
ω   

0=0,=,de=dz;AV=)(f i0 ηψξϕ′ζζ θ
ξ .    (23) 

In this case: 

∫
− ζ−π

−=ζω
1

1s
)s(t

i
1)(  and the profile angle: 

).1,1(,ds
s

)s(t1)(
1

1
−∈ξ

ξ−π
=ξθ ∫

−

 

)(V
d=dS,d

)(V
e=)(z

i

1 ξ
ξ

ϕξ
ξ

ϕξ ξ

θ

ξ
ξ
−∫       (24) 

dSeA=
)(V

dAV=L )S(t1
1

1
1

0 ∫∫ ξ
ξ

−
             (25)  

The resultant of pressures is:  

ζρ+ ζω∫ deAVi=iYX )(20                     (26) 
 

And because the symmetry, 

dS)S(tAV=Y0,=X 1
1

20 ∫−ρ  
 

The lift will be: 

dSe

dS)S(t2
=)t(J,)t(LJV=Y

)S(t1
1

1
120

∫
∫

−

−ρ  

                   (27) 

We search the velocity distribution on 
(AB) by using Jensen's inequality at the 
denominator of so that the functional J(t) 

to be maximum.  we will obtain 

IJ ≤

dS)S(t=H 1
1∫−

2
H

He=IJ
−

≤  in the case equal the functional 
is   maxI .

For obtaining the maxim, , with 0=)H(I′

⎟
⎠
⎞

⎜
⎝
⎛ −′

−

2
H1e=I0,H 2

H

f .  

For 
e
2=I2,=H max  and . 1=)(t ξ

In this case: 

=
)S(

dS1=)(,
e

V=V,
e2

L=A
1

0

ξ−π
ξθ ∫

ξ
−

 

1,1)(,
12
12ln1= −∈ξ

ξ+−
ξ++

π
 

And with 

1)e(sh=k,
1e

e2=d)(cos=
L
l

2
1
1

−
−

ξξθ∫− .  

From  with  we obtain the lift 
coefficient: 

Y maxI

.)k(1
e
2=C,C

LV

Y=C maxymaxy20
y +≤

ρ
 

The optimal lift for plate will be:  
 

0,175,=k,SC=P maxymax ⋅    
 

0,876C maxy ≈                                      (28) 
Wu and Whitney have study this problem 

with application for the case of  “para-slope”. 
 

4. LIFT MAXIMIZATION FOR THE 
CASE OF PARAMETRICAL  VELOCITY 

DISTRIBUTION INPUT 
 

It was demonstrate that for obtaining the 
maximal lift, we analyzed the distribution of 
speeds on the  line: 00AOBBA

),1()1,(,V)(V 0 ∞∪−−∞∈ξ=ξ  and 

).1,1(,
e

V)(V 0 −∈ξ=ξ  In this case we have a 

constant speed 0
0 V

e
V

<  with discontinuities 

at A, B borders (Fig. 1).  
Because AB is curvilinear, in O the speed 

should be maximal and the profile is near the 
segment AB.  

That is why, to create a depressure and to 
obtain the maximal lift we consider a speed 
distribution without discontinuities at A, B, 
and  ,V)1(V,V)(V 00 =±≤ξ

0a),1,1(,
1a1

1V)(V
2

0 ≥−∈ξ
ξ−+

=ξ    

⎟
⎠
⎞⎜

⎝
⎛ ξ−+== 2

0
1a1ln

V
Vlnt                (29) 

If we know =L2,V0 AB , is possible to 
compute the parameter a, and  the 
parameter  for obtaining the optimality. The 
relationships and the rationing are similar 

ABl2 =
k
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those presented in Section 3, for a condition   
of optimality:  with 

 corresponding to the maximal lift 
  

),a,(),a,(tt ** ξθ=θξ=
*aa =

.)aa(C *
y =

In this case  

π+
=

⎭
⎬
⎫

⎩
⎨
⎧ π

+== ∫
− a4

L4A,
2

a2AdseAL2
1

1

)s(t
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The lift 
l
L1

02
k1,ds)s(tAVY

1
=+ρ= ∫

−

and 

the lift coefficient are: 

),k1))(a(t(I)a(C,
lV

YC = y0y 2 +=
ρ

       

∫

∫

−

−= 1

1

)s(t

1

1

dse

ds)s(t
2)a(I                                    

(31) 
e optimization is done according Th

)a(I
)a(I2) 1= , and the integrals )a(I),a(Ia(I

2
are computed for 

21  

.),1(aand]1,0(a ∞∈∈  
  

st1 case: For we have: )1,0(a∈

,
a

)aarccos(a12a2I
2

1
−−−π

=    

]1,0(a,
2

a2I2 ∈
π

+=                             (32) 

It results 0)a(I),a(II >′= upward  and,  
*
1y ==  )1a(C(max)Cy

)k1(639405.0)k1(
4

)2(4(max)Cy +=+
+π
−π

=

                                                                    (33) 

In addition 
l
L)k1( =+  is done according 

,d)a,(cos
L
l 1

1

*∫
−

ξξθ=  

where:  

)1,1(,ds
s

)a,s(t1)aa,(
1

*
* −∈ξ

ξ−π
−==ξθ ∫

ξ

−

nd2 case: When a > 1, the maxim of the 
function )a(II = : 

,
a

1aa21ln1aa2
)a(I

22

1
⎥⎦
⎤

⎢⎣
⎡ −+−−−−π

=

   

2
a4I2
π+

=                                             (35) 

From )a(II = , it results a 

maximum in  and, because I(a) 
is continue in a = 1, for the global 

maximum will be obtained for , 

or  and 

)a(I,0)a(I * =′

16393.2a*
2 =

),0(a ∞∈

16393.2a* =

)a(II *=
)k1(72122.0(max)Cy +=                     (36) 

The numerical computation for (1+k) will 
be made for this value,  and the optimal 
geometric shape is:  

*a

,
L

),a(xX
* ξ

=  
L

),a(yY
* ξ

= ,   )1,1(−∈ξ

The numerical result is: 
k+1=1.19206 and  (37) ,86948.0(max)Cy =

very near the previous 0.86468 [2], and 
corresponds to:  

,
1a1

V
e

V
2*

00

ξ−+
≈  

18878.2a* ≈                                          (38) 
 

5. CONCLUDING REMARKS 
 

The inverse method and the integral 
singular equations presented here is a general 
one, and permits to determine the geometric 
design of aerodynamic airfoils in an exact 
manner.  

The solutions that represents the 
distribution of speeds, angles or pressures on 
the determined profile are also cases that 
optimizes the aerodynamic forces: the 
maximal drag or the maximal lift. 

The optimization is proceeed by extreming 
the non- linear integral operators, obtaining 
the analytic exact solutions. The applications 
are important in the aerodynamics of low 
speed small UAVs [9,10] and these results 

   (34) 

could be extended to the case of compressible 
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subsonic regime, [11] or the case of 
axysimmetric shapes. 
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